
 

 

 
Abstract—Since Black-Scholes model was proposed in 1973, it 

has been applied widely for option pricing. The aim of this paper is 
to develop European option pricing model taking into account 
stochastic volatility and stochastic market price of risk (MPR) under 
the framework of Black-Scholes. Both volatility and market price of 
risk are assumed to be stochastic and assumed to follow Ornstein-
Uhlenbeck process. By using an analytical approach of Abraham 
Loui, explicit formulas are derived for European call and put option 
prices. Sensitivity of option price to model parameters are tested and 
the simulation results show the strong characteristic of stochastic 
model. 
 

Keywords—European option pricing model, stochastic volatility, 
stochastic market price of risk, Ornstein-Uhlenbeck process, Black-
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I. INTRODUCTION 
N 1973, Fischer Black and Myron Scholes proposed a 
mathematical model for option pricing [1]. Since then 

option has been playing a very significant role for many 
investors in financial market as a derivative financial 
instrument for traders who need to secure their investments in 
order to gain confidence of making a profit from the stock 
market. Technically, the mathematical model of Black-
Scholes is based on the financial parameters of stock price 
S(t), strike price of an option K(t), interest rate r, time t, 
maturity date T and constant volatility  . Many interesting 
mathematical models for option pricing has been developed 
and proposed by many researchers. The purpose of their 
studies is to estimate the price of an option by applying their 
mathematical models or approaches [2]-[12]. 

Under the Black-Scholes setting, many strong assumptions 
have been assumed such as stock prices are followed the 
normal distribution with known mean and constant volatility. 
In order to make the option pricing model more applicable to 
the real world, some assumptions of the Black-Scholes model 
are relaxed and some parameters of the model are assumed to 
follow the real-world situation. 
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The constant volatility assumption has been changed and 

generalized by considering deviation of volatility. Many 
researchers have developed the option pricing model taking 
into account stochastic volatility. Scott [2], Hull and White 
[3], Wiggins [4] and Heston [5]-[7] have generalized the 
option pricing model by allowing the stochastic characteristic 
of volatility. The study of option pricing model has been 
extended and the stochastic volatility has been analyzed for 
more properties on parameters by Jacquire, Polson and Rossi 
[8], Carr, German, Madan and Yor [9] and Barndorff-Nielsen 
and Shephard [13]. 

In this paper, we extend the Black-Scholes model by 
considering the stochastic volatility to follow Ornstein-
Unlenbeck process [14] and allowing the existence of 
stochastic market price of risk to follow the mean-reverting 
process. The stochastic volatility and stochastic market price 
of risk allow the random deviation which is the same as the 
real-world situation of financial market. 

II. THE MODELS 
The financial market is assumed to be complete with no 

arbitrage opportunity as the important assumptions to 
construct the option pricing models. There exists a fixed 
martingale measure Q which is equivalent to the probability 
measure P such that the asset price that is discounted at the 
risk-free interest rate is martingale under the probability space 
(Ω, P, F) where Ω is the pricing outcomes space, F is the σ-
algebra denoting measurable events, and P is the probability 
measure. This mathematical assumption assures that the 
financial market has no arbitrage opportunity [15]. All 
stochastic processes in any such pricing environment are 
adapted to the filtration }{ tF , generated by the Wiener 
processes. 

According to Girsanov’s theorem with multiple Brownian 
motions, there exists tF -adapted process )(1 tk  and )(2 tk . 
The equivalent martingale measure Q and the measurable 
probability P are related by the following Radon-Nikodym 
derivative equation [16]-[17]. 
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The pricing movement of Brownian motions, )(1 sdW  and 

)(2 sdW  are one-dimensional uncorrelated Weiner Processes 
which are defined and assumed to follow a complete 
probability space (Ω, P, F). The infinitesimal amount of stock 
price )(tdS  depends on the risky asset price corresponds to a 
stock process )(tS  under the mean ))(,( tStS  in an 
infinitesimal amount of time dt. With the stochastic movement 
of the stock, the rate of change of stock price can be modeled 
by the following stochastic differential equation [19] 

 

                     )()())(,(
)(
)(

1 tdWtdttSt
tS
tdS

S    (2) 

 
where 0)0( S . ))(,( tStS  is stock yield and )(t  is 
stochastic volatility which is assumed to follow the Ornstein-
Uhlenbeck process. Then we have the stochastic volatility 
process as 
 
          )()()()( 2211 tdWtdWdtttd            (3) 
 
where ,0)0(  , , 1  and 2  are constants. 

Equation (3) is correlated to (2). This correlation explicitly 
allows the relationship between corresponding processes )(tS  
and ).(t  In particular case, the absence of correlation 
between two processes are easily obtained by setting the 
parameter 1  or 2  equals to zero. 

The market price of risk or MPR is considered as a risk 
factor ik  which follows the Ornstein-Uhlenbeck process 
 
                     )()()( tdWdttktdk ikiikikii    (4) 
 
where ,0)0( k ,ki ki  and ki  are constants when i = 1, 2. 

In the real world of financial market, the stock process and 
volatility process are governed by the market price of risk 
MPR. Consequently, in the next section, the option pricing 
models are constructed to enclose the market price of risk 
factor which yield some advantages for asset pricing. 

III. THE METHODS 
The method of deriving the explicit formula for European 

option price is performed by following Abraham Lioui’s 
analytic approach [20]-[21] with some extra mathematical 
assumptions. Some derivations of basic formulae have been 
presented in [22], reproduced here for completeness. Extra 
results are then presented in this work. 

Under the assumptions of arbitrage-free, the formulas for 
European options are derived by encapsulating the market 
price of risk )(tki , the kernel of movement in stock process 
and volatility process are changed. Accordingly, the Wiener 
processes )(tWi in the processes (2)–(4) are reconstructed by 

changing )(tWi  to )(tW i  where 
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t
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The dynamic models (2)–(4) are changed. The equation of 
the stock price (2) becomes 
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Because of the fact that MPR has an influence on the 

directional movement of the underlying asset, the stochastic 
volatility follows the process 
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From (7), we have 
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when market price of risk MPR is defined by Ornstein-
Uhlenbeck process [17]-[18] 
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where )1( kikiki    and  kikiki   1/ . 
 

From (9), we have 
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By using integrating factor, we obtain 
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European call option is valued first in order to obtain 

European put option formula by using the concept of put-call 
parity. The European call option C(t) is defined as in [20] 
 
                    t

tTrQ FKTSeEtC |)()( )(    (13) 

                           tKTS
QtTr FTSEe |1)( )(

)(


  
 tKTS

QtTr FEKe |1 )(
)(


  (14) 

 

when 


 

 otherwiseif0
)(if1

1 )(
KTS

KTS . 

 
We assume the distribution of stock price S(T) is modeled 

as follows. 
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By using the analytic approach of Abraham Lioui [20]-[21] 

and applying simple integration techniques, we can derive 
integral term 
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By substituting (16) into (15), the formula for stock pricing 

is derived. However, since the integral in (16) is in a very 
complicated form. We will derive the formula for stock prices 
and option prices by simplification. 

Now we define functions as follows. 
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From (15), we consider the integral term 
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By applying Itō isometry, we have 
 

dssPdssPtRdss
T

t

T

t

T

t
 












)()()()( 2

2
2

1

2

  

                                    )()()(2 11

6

1

sWdsPtM
T

ti
i  












 

                                    )()()(2 22

6

1

sWdsPtM
T

ti
i  












 

                                      
T

t

T

t

sWdsWdsPsP )()()()(2 2121 .(18) 

dssPdssPtRdss
T

t

T

t

T

t
 












)()()()( 2

2
2

1

2

  

                                    )()()(2 11

6

1

sWdsPtM
T

ti
i  












 

                                   )()()(2 22

6

1

sWdsPtM
T

ti
i  












 

                                    
T

t

sWdsP )()(2 33 . (19) 

where )()()( 321 sPsPsP   and we assume 

    
T

t

T

t

T

t

sWdsWdsWd )()()( 321 . 
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We substitute (19) and (20) into (15), we obtain 
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We denote 
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From (14), we solve  tKTS
Q FE |1 )(   by denoting   as 
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Since   follows a standard normal distribution, thus 
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Next we solve 
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where ).(21 tdd   
 

By applying (21)–(26) into (14), the European option price 
with stochastic volatility and stochastic market price of risk 
can be formulated. 

 

IV. THE FORMULAS 
The price of European call option C(t) with maturity T, 

strike price K, stochastic volatility )(t  and stochastic market 
price of risk )(tk  on stock S(t) can be evaluated by the 
formula 
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The put-call parity formula between European call and put 
option when related to stochastic volatility and stochastic 
market price of risk can be derived as follows. 
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and by applying the formula of put-call parity, we can derive a 
formula of European put option P(t) with maturity T, strike 
price K, stochastic volatility )(t  and stochastic market price 
of risk )(tk  on stock S(t) as follows. 
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Consequently, the call option price, put-call parity relationship 
and put option price can be formulated under the circumstance 
of stochastic volatility and market price of risk (MPR). 

V. THE SIMULATIONS 
In this section, the simulations are performed to investigate 

our extended models. The option price sensitivity is simulated 
by setting the parameters as follows [23]: 

 
500K  10.0  20.01 k  20.02 k  
05.0r  10.01   10.01 k  10.02 k  

 10.02     

 

A. Sensitivity of call option prices to the maturity T 
We investigate the sensitivity of the model output to the 
change of maturity by setting maturity T at three different 
values: T = 0.1, T = 0.3 and T = 0.5. We observe the change of 
the model results of by setting three scenarios with the same 
friction coefficient parameters 40.0 , 35.01 k and  

35.02 k . In the first scenario, in Fig.1 and Fig.2, we 
investigate the behavior of our model by setting 10.0)0(  , 

20.0)0(1 k and 20.0)0(2 k . We can see that as the 
maturity time increases, the call option prices decreases and 
the put option prices increase. In the second scenario, in Fig.3 
and Fig.4, we investigate the behavior of our model by setting 

20.0)0(  , 40.0)0(1 k and 40.0)0(2 k . We can see that as 

the maturity time increases, the call option prices increases 
and the put option prices decrease. However, when it the 
moneyness is in-the-money, call option prices with less 
maturity performs higher prices compared to the other higher 
maturities. While the third scenario, in Fig.3 and Fig.4, when 

30.0)0(  , 60.0)0(1 k and 60.0)0(2 k , shows the 
similar trend for both in-the-money and out-of-the money with 
the different maturities. 
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(a) 

 
(b) 

 
Fig.1 Sensitivity of call option prices to the maturity T when 

10.0)0(  , 20.0)0(1 k  and 20.0)0(2 k . (a) Call option 
price, (b) The ratio of call option price determined by the constant 
Black-Scholes model over the option price obtained from our 
stochastic model. In the figure, T = 0.1 (dotted line), T = 0.3 (dash-
dotted line), T = 0.5 (dashed line). 
 

 
(a) 

 
(b) 

 
Fig.2 Sensitivity of put option prices to the maturity T when 

10.0)0(  , 20.0)0(1 k and 20.0)0(2 k . (a) Put option 
price, (b) The ratio of put option price determined by the constant 
Black-Scholes model over the option price obtained from our 
stochastic model. In the figure, T = 0.1 (dotted line), T = 0.3 (dash-
dotted line), T = 0.5 (dashed line). 
 

 
(a) 

 
(b) 

 
Fig.3 Sensitivity of call option prices to the maturity T when 

20.0)0(  , 40.0)0(1 k and 40.0)0(2 k . (a) Call option 
price, (b) The ratio of call option price determined by the constant 
Black-Scholes model over the option price obtained from our 
stochastic model. In the figure, T = 0.1 (dotted line), T = 0.3 (dash-
dotted line), T = 0.5 (dashed line). 
 

 
(a) 

 
(b) 

 
Fig.4 Sensitivity of put option prices to the maturity T when 

20.0)0(  , 40.0)0(1 k and 40.0)0(2 k . (a) Put option 
price, (b) The ratio of put option price determined by the constant 
Black-Scholes model over the option price obtained from our 
stochastic model. In the figure, T = 0.1 (dotted line), T = 0.3 (dash-
dotted line), T = 0.5 (dashed line). 
 

 
(a) 

 
(b) 

 
Fig.5 Sensitivity of call option prices to the maturity T when 

30.0)0(  , 60.0)0(1 k and 60.0)0(2 k . (a) Call option 
price, (b) The ratio of call option price determined by the constant 
Black-Scholes model over the option price obtained from our 
stochastic model. In the figure, T = 0.1 (dotted line), T = 0.3 (dash-
dotted line), T = 0.5 (dashed line). 
 

 
(a) 

 
(b) 

 
Fig.6 Sensitivity of put option prices to the maturity T when 

30.0)0(  , 60.0)0(1 k and 60.0)0(2 k . (a) Put option 
price, (b) The ratio of put option price determined by the constant 
Black-Scholes model over the option price obtained from our 
stochastic model. In the figure, T = 0.1 (dotted line), T = 0.3 (dash-
dotted line), T = 0.5 (dashed line). 
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B. Sensitivity of call option prices to the volatility friction 
coefficient   

We investigate the sensitivity of the model output to the 
change of volatility friction coefficient   by setting the 
volatility friction coefficient   at three different values: 

20.0 , 50.0  and 90.0 . We observe the change 
of the model results of by setting three scenarios with the 
same market price of risk friction coefficient parameters, 

35.01 k , 35.02 k ; and the other parameters as 
10.0)0(  , 20.0)0(1 k  and 20.0)0(2 k . First scenario, 

in Fig.7 and Fig.8, we investigate behavior of our model by 
setting T = 0.1 as the short range of maturity. Second scenario, 
in Fig.9 and Fig.10, we investigate behavior of our model by 
setting T = 0.3 as the middle range of maturity. And third 
scenario, in Fig.11 and Fig.12, we investigate behavior of our 
model by setting T = 0.5 as the long range of maturity. 
Obviously, the model results show that the sensitivity of the 
model output to the change of volatility friction coefficient   
is significantly high. 

 
(a) 

 
(b) 

Fig.7 Sensitivity of call option prices to volatility friction coefficient 

  when T = 0.1, 20.0)0(  , 20.0)0(1 k  and 20.0)0(2 k . 
(a) Call option price, (b) The ratio of call option price determined by 
the constant Black-Scholes model over the option price obtained 
from our stochastic model. In the figure, 2.0  (dotted line), 

5.0  (dash-dotted line), 9.0  (dashed line). 

 
(a) 

 
(b) 

Fig.8 Sensitivity of put option prices to volatility friction coefficient 

  when T = 0.1, 20.0)0(  , 20.0)0(1 k  and 20.0)0(2 k . 
(a) Put option price, (b) The ratio of put option price determined by 
the constant Black-Scholes model over the option price obtained 
from our stochastic model. In the figure, 2.0  (dotted line), 

5.0  (dash-dotted line), 9.0  (dashed line). 

 
(a) 

 
(b) 

 
Fig.9 Sensitivity of call option prices to volatility friction coefficient 

  when T = 0.3, 20.0)0(  , 20.0)0(1 k  and 20.0)0(2 k . 
(a) Call option price, (b) The ratio of call option price determined by 
the constant Black-Scholes model over the option price obtained 
from our stochastic model. In the figure, 2.0  (dotted line), 

5.0  (dash-dotted line), 9.0  (dashed line). 
 

 
(a) 

 
(b) 

Fig.10 Sensitivity of put option prices to the volatility friction 
coefficient   when T = 0.3, 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Put option price, (b) The ratio of put option price 
determined by the constant Black-Scholes model over the option 
price obtained from our stochastic model. In the figure, 2.0  

(dotted line), 5.0  (dash-dotted line), 9.0  (dashed line). 

 
(a) 

 
(b) 

Fig.11 Sensitivity of call option prices to the volatility friction 
coefficient   when T = 0.5, 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Call option price, (b) The ratio of call option 
price determined by the constant Black-Scholes model over the 
option price obtained from our stochastic model. In the figure, 

2.0  (dotted line), 5.0  (dash-dotted line), 9.0  
(dashed line). 
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(a) 

 
(b) 

Fig.12 Sensitivity of put option prices to the volatility friction 
coefficient   when T = 0.5 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Put option price, (b) The ratio of put option price 
determined by the constant Black-Scholes model over the option 
price obtained from our stochastic model. In the figure, T = 0.1 
(dotted line), T = 0.3 (dash-dotted line), T = 0.5 (dashed line). 

C. Sensitivity of call option prices to the market price of risk 
friction coefficient ki  

We investigate the sensitivity of the model output to the 
change of market price of risk friction coefficient ki  by 
setting the market price of risk friction coefficient ki  at three 
different values: 2.0ki , 5.0ki  and 9.0ki . We 
observe the change of the model results of by setting three 
scenarios with the same volatility friction coefficient 
parameters, 35.0 ; and the other parameters as 

10.0)0(  , 20.0)0(1 k  and 20.0)0(2 k . First scenario, 
in Fig.13 and Fig.14, we investigate behavior of our model by 
setting T = 0.1 as the short range of maturity. Second scenario, 
in Fig.15 and Fig.16, we investigate behavior of our model by 
setting T = 0.3 as the middle range of maturity. And third 
scenario, in Fig.17 and Fig.18, we investigate behavior of our 
model by setting T = 0.5 as the long range of maturity. 
Obviously, the model results show that the sensitivity of the 
model output to the change of volatility friction coefficient   
is high as we expect. These are results of different scenarios as 
we expect from the stochastic behavior. 

 
(a) 

 
(b) 

Fig.13 Sensitivity of call option prices to market price of risk friction 
coefficient ki when T = 0.1, 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Call option price, (b) The ratio of call option price 
determined by the constant Black-Scholes model over the option 
price obtained from our stochastic model. In the figure, 2.0ki  

(dotted line), 5.0ki  (dash-dotted line), 9.0ki  (dashed line) 
when 1i , 2 and 3. 

 
(a) 

 
(b) 

Fig.14 Sensitivity of put option prices to market price of risk friction 
coefficient ki  when T = 0.1, 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Put option price, (b) The ratio of put option price 
determined by the constant Black-Scholes model over the option 
price obtained from our stochastic model. In the figure, 2.0ki  

(dotted line), 5.0ki  (dash-dotted line), 9.0ki  (dashed line) 
when 1i , 2 and 3. 
 

 
(a) 

 
(b) 

Fig.15 Sensitivity of call option prices to market price of risk friction 
coefficient ki  when T = 0.3, 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Call option price, (b) The ratio of call option price 
determined by the constant Black-Scholes model over the option 
price obtained from our stochastic model. In the figure, 2.0ki  

(dotted line), 5.0ki  (dash-dotted line), 9.0ki  (dashed line) 
when 1i , 2 and 3. 

 
(a) 

 
(b) 

Fig.16 Sensitivity of put option prices to market price of risk friction 
coefficient ki  when T = 0.3, 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Put option price, (b) The ratio of put option price 
determined by the constant Black-Scholes model over the option 
price obtained from our stochastic model. In the figure, 2.0ki  

(dotted line), 5.0ki  (dash-dotted line), 9.0ki  (dashed line) 
when 1i , 2 and 3. 
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(a) 

 
(b) 

 
Fig.17 Sensitivity of call option prices to market price of risk friction 
coefficient ki  when T = 0.3, 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Call option price, (b) The ratio of call option price 
determined by the constant Black-Scholes model over the option 
price obtained from our stochastic model. In the figure, 2.0ki  

(dotted line), 5.0ki  (dash-dotted line), 9.0ki  (dashed line) 
when 1i , 2 and 3. 
 

 
(a) 

 
(b) 

 
Fig.18 Sensitivity of put option prices to market price of risk friction 
coefficient ki  when T = 0.3, 20.0)0(  , 20.0)0(1 k  and 

20.0)0(2 k . (a) Put option price, (b) The ratio of put option price 
determined by the constant Black-Scholes model over the option 
price obtained from our stochastic model. In the figure, 2.0ki  

(dotted line), 5.0ki  (dash-dotted line), 9.0ki  (dashed line) 
when 1i , 2 and 3. 

VI. CONCLUSION 
In this paper, our purpose is to develop an option pricing 

model under the stochastic behavior of both volatility and 
market price of risk. By setting up the volatility and market 
price of risk process to follow Ornstein-Unlenbeck processes, 
we can analytically derive the formula for European option 
price with the same approach of Abraham Loui’s previous 
work [20]. We test the sensitivity of each parameter to the 
model price by setting different scenarios. Each scenario of 
parameter setting implies each situation of the real-world 
market. The simulation results of sensitivity test perform the 
obvious stochastic behavior as we expected. 
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